资讯快报

(第581期)

北京电子科技职业学院图书馆北京经济技术开发区资讯中心

2022年12月8日

智能制造

【自驱动力微机器人 去除水中微纳塑料】

根据媒体信息缩编,原文来源于《Science Advances》

暨南大学与香港大学的科研团队合作,设计出一种自驱动力微机器人(SMR)。SMR利用与环境中杂质离子交换的能量实现自驱动,无需额外输入能量,大大降低了制备成本;同时长程吸附能够大大拓展动态吸附范围,提高了吸附去除的效率。SMR可广泛适用于不同的成分、大小和形状的微纳塑料颗粒以及各类非海洋水体中微纳塑料的去除。

【新型微软体机器人 可在复杂表面攀爬】

根据媒体信息缩编,原文来源于《PNAS》

清华大学航天航空学院张一慧教授课题组开发了一种构型 可定制和刚度可主动调节的三维电驱动软驱动器,并基于此设 计并制备了一种多步态微型软体机器人。这种机器人能够在不 同形貌表面攀爬,并在两个不同表面之间过渡。其可以代替人 类进入复杂、非结构化环境中执行特殊任务,在探测等方面有 着巨大应用价值。

【多场驱动微型机器人 助力多领域应用场景】

根据媒体信息缩编,原文来源于《ACS Nano》

中科院沈阳自动化研究所微纳米课题组研发出多刺激响应 超疏水微型机器人。该微型机器人内部具有感知红外光和磁场 的单元, 使其可在光场、磁场等控制下在水面快速游动。在多 场联合控制下,微型机器人可实现协同配合操作。这种机器人 在细胞操作、净化水源、生物组织构建等领域颇具应用前景。

【鸟型无人机 能够急转弯】

根据媒体信息缩编,原文来源于《Communications Engineering》

瑞士科学家设计了一种受鸟类启发的有翼无人机。这种无 人机由纤维强化塑料制成,有两个机翼和一个尾部,类似于鸟 的外观,可以收拢和倾侧,实现急转弯避障飞行。研究者认为, 这种无人机可以在密集环境如城市中长距离飞行, 执行任务。

【按扣式发卡带来灵感 最快蝶泳机器人问世】

根据媒体信息缩编,原文来源于《Science Advances》

美国北卡州立大学的尹杰团队巧妙地设计了一款会模仿人 类蝶泳的轻质软体机器人。该蝶泳机器人的翅膀是一种类似于 发卡的双稳态结构,通过在这两种稳态之间的切换,可以把能 量迅速释放,从而获得很大的游速。水下环境恶劣危险,人的 潜水深度有限,这种游泳机器人有望代替人类完成一些工作, 也可应用于研究领域。

报: 开发区领导、电科院领导

拟稿: 刘吉宏

送: 开发区部门领导、社区领导、企业领导

校对: 侯庆红

发: 电科院二级学院及有关部门、资讯中心信息员

审核: 苏东海

网站: https://www.bpi.edu.cn/ 邮箱:dky xxfw@126.com 电话:87220739